mixvlmc: Variable Length Markov Chains with Covariates
Source:R/mixvlmc-package.R
mixvlmc-package.Rd
Estimates Variable Length Markov Chains (VLMC) models and VLMC with covariates models from discrete sequences. Supports model selection via information criteria and simulation of new sequences from an estimated model. See Bühlmann, P. and Wyner, A. J. (1999) doi:10.1214/aos/1018031204 for VLMC and Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022) doi:10.1111/jtsa.12615 for VLMC with covariates.
Package options
Mixvlmc uses the following options()
:
mixvlmc.maxit
: maximum number of iterations in model fitting forcovlmc()
mixvlmc.predictive
: specifies the computing engine used for model fitting forcovlmc()
. Two values are supported:"glm"
(default value):covlmc()
usesstats::glm()
with a binomial link (stats::binomial()
) for a two values state space, andVGAM::vglm()
with a multinomial link (VGAM::multinomial()
) for a state space with three or more values;"multinom"
:covlmc()
usesnnet::multinom()
in all cases.
The first option
"glm"
is recommended as bothstats::glm()
andVGAM::vglm()
are able to detect and deal with degeneracy in the data set.mixvlmc.backend
: specifies the implementation used for the context tree construction inctx_tree()
,vlmc()
andtune_vlmc()
. Two values are supported:"R"
(default value): this corresponds to the original almost pure R implementation."C++"
: this corresponds to the experimental C++ implementation. This version is significantly faster than the R version, but is still considered experimental.
Author
Maintainer: Fabrice Rossi Fabrice.Rossi@apiacoa.org (ORCID) [copyright holder]
Other contributors:
Hugo Le Picard lepicardhugo@gmail.com (ORCID) [contributor]
Guénolé Joubioux guenole.joubioux@gmail.com [contributor]