Predictive quality metrics for a node of a context tree
Source:R/ctx_node_vlmc.R
metrics.ctx_node.Rd
This function computes and returns predictive quality metrics for a node
(ctx_node
) extracted from a context tree.
Usage
# S3 method for ctx_node
metrics(model, ...)
Arguments
- model
T
ctx_node
object as returned byfind_sequence()
.- ...
Additional parameters for predictive metrics computation.
Value
The returned value is guaranteed to have at least three components
accuracy
: the accuracy of the predictionsconf_mat
: the confusion matrix of the predictions, with predicted values in rows and true values in columnsauc
: the AUC of the predictive model
Details
Compared to metrics.vlmc()
, this function focuses on a single context and
assesses the quality of its predictions, disregarding observations that have
other contexts. Apart from this limited scope, the function operates as
metrics.vlmc()
.
References
David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171--186. DOI: doi:10.1023/A:1010920819831 .
See also
metrics.vlmc()
, metrics.ctx_node()
, contexts.vlmc()
, predict.vlmc()
.
Examples
pc <- powerconsumption[powerconsumption$week == 5, ]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts)
model_ctxs <- contexts(model)
metrics(model_ctxs[[4]])
#> Context [T]: (0,0.458], (0,0.458]
#> followed by (0,0.458] (161), (0.458,1.34] (36), (1.34,2.13] (1), (2.13,7.54] (1)
#> Confusion matrix:
#> (0,0.458] (0.458,1.34] (1.34,2.13] (2.13,7.54]
#> (0,0.458] 30 9 0 0
#> (0.458,1.34] 0 0 0 0
#> (1.34,2.13] 0 0 0 0
#> (2.13,7.54] 0 0 0 0
#> Accuracy: 0.7692
#> AUC: NA