Predictive quality metrics for a node of a COVLMC context tree
Source:R/ctx_node_covlmc.R
metrics.ctx_node_covlmc.Rd
This function computes and returns predictive quality metrics for a node
(ctx_node_covlmc
) extracted from a covlmc
Usage
# S3 method for ctx_node_covlmc
metrics(model, ...)
Arguments
- model
A
ctx_node_covlmc
object as returned byfind_sequence()
orcontexts.covlmc()
- ...
Additional parameters for predictive metrics computation.
Value
an object of class metrics.covlmc
with the following components:
accuracy
: the accuracy of the predictionsconf_mat
: the confusion matrix of the predictions, with predicted values in rows and true values in columnsauc
: the AUC of the predictive model
Details
Compared to metrics.covlmc()
, this function focuses on a single context and
assesses the quality of its predictions, disregarding observations that have
other contexts. Apart from this limited scope, the function operates as
metrics.covlmc()
.
References
David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171--186. DOI: doi:10.1023/A:1010920819831 .
Examples
pc <- powerconsumption[powerconsumption$week == 5, ]
breaks <- c(
0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)
)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
m_ctxs <- contexts(m_cov)
## get the predictive metrics for each context
lapply(m_ctxs, metrics)
#> [[1]]
#> Context [T]: 0
#> followed by 0 (318), 1 (31)
#> Confusion matrix:
#> 0 1
#> 0 318 31
#> 1 0 0
#> Accuracy: 0.9112
#> AUC: 0.6111
#>
#> [[2]]
#> Context [T]: 0, 1
#> followed by 0 (4), 1 (27)
#> Confusion matrix:
#> 0 1
#> 0 0 0
#> 1 4 27
#> Accuracy: 0.871
#> AUC: 0.5
#>
#> [[3]]
#> Context [T]: 0, 1, 1
#> followed by 0 (5), 1 (22)
#> Confusion matrix:
#> 0 1
#> 0 0 0
#> 1 5 22
#> Accuracy: 0.8148
#> AUC: 0.5
#>
#> [[4]]
#> Context [T]: 1, 1, 1
#> followed by 0 (23), 1 (575)
#> Confusion matrix:
#> 0 1
#> 0 0 0
#> 1 23 575
#> Accuracy: 0.9615
#> AUC: 0.5
#>